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Abstract
With a simple but exactly solvable model, we investigate the supercurrent transferring through
the c-axis cuprate superconductor–normal metal–superconductor junctions with the clean
normal metal much thicker than its coherence length. It is shown that the supercurrent as a
function of thickness of the normal metal decreases much slower than the exponential decaying
expected by the proximity effect. The present result may account for the giant proximity effect
observed in the c-axis cuprate SNS junctions.

(Some figures in this article are in colour only in the electronic version)

In a superconductor–normal metal junction, it is considered
that the Cooper pair can penetrate into the normal metal within
a distance of the coherence length ξn due to the proximity
effect [1]. Therefore, according to the proximity theory,
the supercurrent cannot transfer through a superconductor–
normal metal–superconductor (SNS) junction when the normal
metal is much thicker than ξn. However, the supercurrent in
high-temperature-superconductor (HTSC) junctions with very
thick barrier (consisting of weakly doped nonsuperconducting
cuprates) has been observed by a number of experiments [2–9].
There have been some theoretical explanations based on the
assumption of the existence of superconducting puddles in the
pseudogap states of the cuprates [10, 11]. But the physics of
pseudogap states of the cuprates is not clearly understood so
far. The explanation based on the tunneling of the preformed
pairs in cuprates has also been proposed recently [12].
Nevertheless, the problem whether the supercurrent can
transfer through a long bridge of normal metal between two
superconductors is still an outstanding puzzle.

The supercurrent stems from the motion of paired carriers
in the superconductor. It is known that the supercurrent
can be conducted by Andreev reflections in the SNS
junctions [13–24]. The supercurrent in one superconductor,
for example in the left one, can transfer through the SN
interface by generating the propagations of electrons and
holes in the normal metal due to the Andreev refection. At
another NS interface, the electrons and holes are converted

into paired electrons in the right superconductor [25]. As a
result, the paired particles are conducted from the left to right
superconductors even though Cooper pairs cannot survive in
the normal metal. In the case of a clean normal metal without
large damping in particle propagations, the supercurrent may
transfer through the long SNS junction. A study of the
supercurrent in the c-axis cuprate SNS junctions of a thick
normal-metal bridge with this approach is still necessary.

In this work, on the basis of the Andreev-reflection
approach, we study the supercurrent in the c-axis cuprate SNS
junctions using a simple but exactly solvable model. We will
show that the supercurrent can transfer through the junctions
with the normal metal much thicker than its coherence length.
We intend to provide a possible explanation for the relevant
experiments.

We consider a c-axis cuprate SNS junction with the
normal metal occupying the layers from 1−l to l −1. A sketch
of the junction is shown in figure 1. Within the ab plane, the
quasiparticles are described by the t − t ′ tight-binding model
with t ′/t = −0.3. The phase difference φ between the pair
potentials of the two superconductors drives the supercurrent.
With an unitary transformation Û = exp(iσ3φ/4), one can
show that the physical quantities of the system depend only
on the total phase difference of the pair potentials. For
convenience, we here set the phases of the pair potentials as
±φ/2, respectively, for the left and right superconductors. The
electron motion along the c axis is described by the interlayer
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Figure 1. Sketch of a c-axis cuprate SNS junction. The interlayer
hopping is described by tc. t0 is the hopping through the
NS interface.

hopping tc with tc/t � 1. The magnitude of tc may be of the
same order as �. The parameter of electron hopping through
the SN interface is t0. Throughout this paper, we use the units
of e = h̄ = 1 with −e as the charge of an electron.

The states of the quasiparticles are described by the
Bogoliubov–de Gennes (BdG) equation [26]. Since the
momentum parallel to the interfaces is conserved during
the motion of the quasiparticles through the junction, the
transverse (orthogonal to the c axis) part of the wavefunction
can be taken as plane waves. The problem is then reduced
to solving the one-dimensional BdG equation along the z
direction. For an eigenstate of transverse momentum k⊥, the
chemical potential in the BdG equation is then substituted by
μ̃(k⊥) = μ − ε(k⊥), where ε(k⊥) = −2t (cos k1 + cos k2) −
4t ′ cos k1 cos k2 is the in-plane single-particle energy, with k1

and k2 the two components of k⊥. The order parameters
of the superconductors are given by �(k⊥) exp(±iφ/2) (+
and − for left and right superconductors, respectively) with
�(k⊥) = �(cos k1 − cos k2). The BdG equation is

∑

j

Hi jψ( j) = Eψ(i), (1)

with

Hi j =

⎧
⎪⎨

⎪⎩

[vi − μ̃(k⊥)]σ3 +�iσ
+ +�∗

i σ
−, for i = j

−tcσ3, for nearest-layer hoppings

−t0σ3, for interface hoppings

where vi = V0 for 1 − l < i < l − 1 or 0 otherwise,
�i = �(k⊥) exp(iφ/2) for i � −l, �i = �(k⊥) exp(−iφ/2)
for i � l, and σ ’s are the Pauli matrices. The potential shift
V0 controls the density difference between the normal metal
and the superconductors. All the states in a complete basis
can be divided into three types: incoming waves of free states
from the left and right superconductors, and the bound states
mainly confined in the normal metal with damping tails in the
two superconductors.

The free state with an incoming wavenumber k+ from the
left superconductor is obtained as [19]

ψl1( j) =
(

ueφ
ve∗
φ

)
(eik+z′ + be−ik+z′

)+ a

(
veφ
ue∗

φ

)
eik−z′

,

z′ = j + l � 0

ψl2( j) =
(

A1eiq1 j + A2e−iq1 j

B1e−iq2 j + B2eiq2 j

)
, 1 − l � j � l − 1

Figure 2. Sketch for the definition of wavenumbers k+ and k− on
energy curve E(k). The reflected waves of an incoming wave of k+
include two components of a, the Andreev, and b, the normal,
reflections.

ψl3( j) = c

(
ve∗
φ

ueφ

)
e−ik−z′ + d

(
ue∗

φ

veφ

)
eik+z′

,

z′ = j − l � 0

with the boundary conditions

rψl1(−l)− ψl2(−l) = 0

ψl1(1 − l)− rψl2(1 − l) = 0

rψl2(l − 1)− ψl3(l − 1) = 0

ψl2(l)− rψl3(l) = 0

(2)

where eφ = exp(iφ/4), the wavenumbers q1, q2, k+ and
k− satisfy the equations ξ(q1) + V0 = −ξ(q2) − V0 =√
ξ 2(k+)+�2(k⊥) ≡ Ek and ξ(k−) = −ξ(k+) with

ξ(k) = −2tc cos k − μ̃(k⊥), u = √
1/2 + ξ(k+)/2Ek ,

v = √
1/2 − ξ(k+)/2Ek and r = t0/tc. The incoming

wavenumber k+ is defined in the ranges −k0 < k+ < 0 and
k0 < k+ < π , where the group velocity ∂Ek/∂k is positive,
with k0 = arccos[−μ̃(k⊥)/2tc] as the ‘Fermi wavenumber’
along the z direction. A sketch for the definition of k+ and
k− is shown in figure 2. The eight coefficients a, b, . . . are
determined by the boundary conditions (2). Denoting

Xt = (a, b, A1, B1, c, d, A2, B2),

with superscript t implying the transpose of vector X , we have
from equations (2)

M X = Z , (3)

where M is an 8 × 8 matrix and Z is a column vector of 8
components. Expressing M in terms of 16-block 2×2 matrices,
we get

M =
⎛

⎜⎝

D1(φ) O(−l) 0 O(l)
D2(φ) r O(1 − l) 0 r O(l − 1)

0 r O(l − 1) D2(−φ) r O(1 − l)
0 O(l) D1(−φ) O(−l)

⎞

⎟⎠ , (4)

D1(φ) =
(

rveφ rueφ
rue∗

φ rve∗
φ

)
,
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D2(φ) =
(
veφe− ueφe−1

+
ue∗

φe− ve∗
φe−1

+

)
,

O(l) =
( −el

1 0
0 −e−l

2

)
,

with e± = exp(ik±). The vector Z is given by

Z t = (−rueφ,−rve∗
φ,−ueφe+,−ve∗

φe+, 0, 0, 0, 0).

Similarly, we can write down the expression for the
incoming wavefunctionsψr from the right superconductor. But
with the configuration of the SNS junction under consideration,
ψr can be obtained from the relation

ψr( j ;φ) = λψl(− j ; −φ), (5)

with λ = ±1.
For the wavefunction ψn of a bound state with energy

0 < En < |�(k⊥)|, the expression is given by [23]

ψn1( j) = an

(
u∗

neφ
une∗

φ

)
eik∗ z′ + bn

(
uneφ
u∗

ne∗
φ

)
e−ikz′

,

z′ = j + l < 0

ψn2( j) =
(

An
1eiqn

1 j + An
2e−iqn

1 j

Bn
1 e−iqn

2 j + Bn
2 eiqn

2 j

)
, −l < j < l

ψn3( j) = cn

(
u∗

ne∗
φ

uneφ

)
e−ik∗z′ + dn

(
une∗

φ

u∗
neφ

)
eikz′

,

z′ = j − l > 0

where k is a complex wavenumber determined by ξ(k) = iγ
with γ = √

�2(k⊥)− E2
n (Im k > 0), un = exp(iθ/2)/

√
2

with θ = arctan(γ /En), qn
1 and qn

2 are determined by ξ(qn
1 )+

V0 = −ξ(qn
2 )− V0 = En . The vector of the coefficients

Xt
n = (an, bn, An

1, Bn
1 , cn, dn, An

2, Bn
2 ),

now satisfies the following equation:

Mn Xn = 0, (6)

where Mn is a counterpart of M with u, v, k+, k−, q1 and q2

replaced with un , u∗
n, k, k∗, qn

1 and qn
2 , respectively. The energy

En is then determined by

det(Mn) = 0. (7)

The solution to the j th component of Xn is given by
the algebraic complement minor of 1jth element of Mn

(multiplied by a factor that is determined by the normalization
condition 〈ψn |ψn〉 = 1). We note at this moment that
(an, bn, An

1, Bn
1 ) = ±(cn, dn, An

2, Bn
2 ) at φ = 0 because

of ψn(x;φ) = ±ψn(−x; −φ). Therefore, for a finite
phase difference, the coefficients an, bn, An

1, Bn
1 should have

respectively the same orders of magnitudes of cn, dn, An
2, Bn

2 .
There are various approximations based on the Andreev and
WKB approximations in the existing theories [14–17]. The
approximation in [16] corresponds to bn = cn = An

2 =
Bn

1 = 0, taking into account only the Andreev reflections
but neglecting the normal reflections at the right NS interface.
It is not correct. Actually, in a bound state, the electrons

and holes are bounced back and forth again and again in the
normal metal. The normal and Andreev reflections at the two
interfaces are equally important.

To derive the expression of the current, we start from
the operator of current density in the continuum model of the
normal metal:

J (x) = − Im[ψ†(x)∇ψ(x)]. (8)

For the lattice case, ∇ψ(x) in equation (8) is replaced with
[ψ( j + 1) − ψ( j − 1)]/2. Taking the statistical average by
summing up all the contributions from the states of positive
and negative energies, we obtain

J =
∫

B Z

d�k⊥
(2π)2

[ ∫
dk+

2π
tanh

(
Ek

2T

)
J f (�k)

+
∑

n

tanh

(
En

2T

)
Re(An∗

+ An
− sin qn

1 − Bn∗
+ Bn

− sin qn
2 )

]

(9)

with

J f (k) = Re{[A∗
+(φ)A−(φ)− A∗

+(−φ)A−(−φ)] sin q1

− [B∗
+(φ)B−(φ)− B∗

+(−φ)B−(−φ)] sin q2}.
where the integral

∫
B Z d�k⊥ runs over the first Brillouin zone,

A± = A1 ± A2, and T is the temperature. The first term
J f on the right-hand side of equation (9) comes from the
contributions of the free states. The second term is due to the
bound states. Here, the phase dependence of the coefficients
of the free waves is explicitly indicated by φ as their argument.
Of course, those coefficients of the bound states An’s and Bn’s,
the energy En and the wavenumbers qn’s depend on the phase
φ as well. At φ = 0, corresponding to the equilibrium state,
there is no current flowing through the junction. The current is
driven by a finite phase difference. Instead, to investigate the
phase dependence, we here confine ourselves to the problem of
length L = 2l dependence of the supercurrent with fixed phase
difference φ = π/2.

For numerical calculation, we need to first determine
the parameters tc , t0, μ, V0 and �. The electron hopping
through the SN interface was chosen as t0 = 0.8tc. The
chemical potential μ and the potential shift V0 in the normal
metal were set respectively to μ/t = −0.97 and V0/t =
−0.042, corresponding to the hole densities δs ≈ 0.13 in
the superconductor and δn ≈ 0.11 in the normal metal (at
finite temperature). Shown in figure 3 are the calculated
results for the supercurrent as a function of the distance L =
2l (in units of the c-direction lattice constant) between two
superconductors. The circles and squares correspond to the
parameters of (tc,�, T )/t = (5, 4.75, 0.25) × 10−2 and
(6, 3.8, 0.2) × 10−2, respectively. For comparison, we also
depict the curves of J (L) ∝ exp(−L/ξ) with ξ = 4 and 6.
Each curve does not match the corresponding numerical results
so well. In particular, at large L, the behavior of J (L) obtained
by the present calculation shows that the current decays much
slower than the exponential type. On the other hand, by the
proximity theory, J (L) should decay exponentially with a
much shorter coherence length ξn ∼ 1–2 Å for cuprates [9]. In
units of the c-axis constant c, this typical coherence length ξn is

3
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Figure 3. c-axis supercurrent J through a d-wave SNS junction as a
function of the distance L between two superconductors. L is given
in units of the c-axis lattice constant. The circles and squares are the
results for two sets of parameters (tc,�, T )/t = (5, 4.75, 0.25)
× 10−2 and (6, 3.8, 0.2)× 10−2, respectively. The dashed lines
express the formula exp[−(L − 2)/ξ ] with ξ = 4 and ξ = 6,
respectively.

about 0.1–0.2 if c = 10 Å. Our model is the simple rectangular
parallelepiped crystal corresponding to the orthogonal system
like HgBaCuO, for which c is 9.5 Å. Most of the cuprates are
staggered stacking and there are multiple layers in each unit
cell. The averaged c is shorter and ξn is estimated as 0.2–0.5.
Our result implies that the supercurrent can flow through the
junction with L > ξ � ξn.

For investigating the temperature dependence, we put the
order parameter �(T ) as an overall function of T as shown
in the inset of figure 4 with �0/Tc = 4 and 0.04. The
parameter tc is fixed as tc/t = 0.06. Figure 4 shows the
results for the supercurrent as a function of the distance L
between two superconductors at various temperatures. They
are compared with the formula exp[−(L − 2)/ξ ]. At T/Tc �
0.3, the numerical results are well fitted by the exponential
forms. The inverse of ξ as a function of T is also shown
in the inset of figure 4. The circles and the dashed line in
figure 4 are the results at T/Tc = 0.2 and correspond to the
squares and the dashed line of the same ξ = 6 in figure 3,
respectively. These results show that the supercurrent can
flow through a junction much thicker than ξn. In particular,
at low temperature, the current decays much slower than the
exponential type at large L.

To compare the present calculation with the proximity
theory for the layered system, we here estimate the theoretical
coherence length ξc along the c axis [7]. According to the
uncertainty principle, ξc is proportional to the inverse of the
uncertainty of the momentum δpc of electrons. The latter
can be estimated as vcδpc ≈ δE , where vc is the averaged
magnitude of the electron velocity along the c direction.
Note that there is no Fermi surface across the c axis in the
layered system with weak interlayer hopping. From the energy
dispersion in the c direction, ε(q) = −2tc cos(q) with q the c-
axis momentum in units of c (c-axis lattice constant) = 1, we
obtain the electron velocity 2tc sin(q). The overall magnitude

Figure 4. c-axis supercurrent J through a d-wave SNS junction as a
function of the distance L between two superconductors at
T/Tc = 0.2, 0.3, 0.5, 0.6 and 0.8. The symbols are the calculated
results. The dashed lines express the formula exp[−(L − 2)/ξ ].
The inset shows the order parameter�(T ) and the inverse of ξ as
functions of T .

of vc can be estimated as tc. On the other hand, the uncertainty
of the energy �E is the order of the bandwidth 4tc. We
then have ξc ≈ 1/4. This ξc is approximately the same as
the observed data for cuprates. Therefore, according to the
proximity theory, the supercurrent cannot transfer along the c
axis even for very short SNS junctions. However, since the
supercurrent can be conducted by the Andreev reflections, it
is not limited by the coherence length. Our calculation may
account for the giant proximity effect observed in the cuprate
SNS junctions.

In summary, we have investigated the supercurrent
transferring through the c-axis cuprate SNS junctions. Due
to the Andreev reflections, the supercurrent is conducted by
the in-gap bound states and the free states above but close
to the gap. It is shown that the supercurrent as a function
of thickness of the normal metal decreases much slower than
the exponential decaying expected by the proximity effect.
This result implies that the supercurrent can transfer through
the clean c-axis cuprate SNS junctions with the normal metal
much thicker than its coherence length. The present result may
account for the giant proximity effect observed in the cuprate
SNS junctions.
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